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Motivation

Raw data are often in a form not amenable to statistical

anlaysis

Example: Using spectra as predictors in regression
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Motivation
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An SDSS galaxy spectrum.
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Motivation
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3,846 galaxy spectra, colored by redshift (Richards, Freeman, Lee, Schafer (2009a))
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Motivation

Raw data are often in a form not amenable to statistical

anlaysis

Example: Modelling the distribution of Tropical Cyclone

tracks
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Motivation
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Tropical Cyclone (TC) Tracks (Buchman, Lee, Schafer (2009))
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Motivation
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1,000 TC tracks, colored by year (Buchman, Lee, and Schafer (2009))
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Motivation

Reparametrize data into a new space, often of lower

dimension

Data can be “nonstandard”: images, spectra, TC tracks, etc.

Location in new embedding space ideally

encodes important information

Aids classification, regression, and other inference tasks
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Transformations

Seek embedding of data in Euclidean space that

best preserves user-defined similarity/distance metric

Multidimensional Scaling

How to specify the pairwise distances?

Often, we only have reliable way of judging if pairs of objects

are “similar” via a local distance metric
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Specifying the Distances
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(Buchman, Lee, Schafer (2009))
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Specifying the Distances

A simple, one-dimensional manifold.
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Specifying the Distances

Euclidean distance good choice for local, not global, distance metric
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Diffusion Distances

Diffusion maps are an approach to spectral connectivity

analysis (Lee and Wasserman (2009))

Based on constructing fictive random walks on the data

At each “step,” can only move to “similar” data points

Walks starting from dissimilar data points will require

many steps to “meet”
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Diffusion Distances
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Two points on the noisy spiral
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Diffusion Distances

*

Gaussian centered on one point
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Diffusion Distances
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t = 1

Yields distribution over points after first step
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Diffusion Distances

**

*

t = 2

Distribution after the second step
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Diffusion Distances
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t = 25

Distribution after the 25
th step

19



Diffusion Distances
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*

t = 25

Imagine doing for both points

20



Diffusion Distances

Coifman and Lafon (2006)

After t steps, a walk which begins at x has distribution pt(x, ·)
over Xobs

As t → ∞, it holds that pt(x, ·) → s(·), where s(·) is the

stationary distribution for the walk

Define the t-step diffusion distance between x and y as

Dt(x,y) =

√

√

√

√

∑

z∈Xobs

(pt(x, z) − pt(y, z))2

s(z)

21



Diffusion Map Construction

Need to specify “local” distance measure (∆ℓ) and

neighborhood size (ǫ)

If at x, probability next step is to y is proportional to

exp
(

−∆ℓ(x,y)2

/

4ǫ
)

,

i.e., a Gaussian kernel with a “standard deviation” of
√

ǫ

/

2

In R: diffuse() as part of package diffusionMap
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Coordinate Functions
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In PCA, coordinate functions are linear
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Coordinate Functions

First coordinate plot for diffusion map
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Coordinate Functions

Second coordinate plot for diffusion map
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Preliminary TC Results
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1,000 TC tracks, colored by year (Buchman, Lee, and Schafer (2009))
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Preliminary TC Results
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Tracks close to (0.39, 0.086, 0.0098) in diffusion space
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Preliminary TC Results
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Comparison of density at (0.39, 0.086, 0.0098) to SST at (30W, 15N)
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Current Directions

Incorporating Covariates (climate variables)

Evolution of distribution of galaxy shapes with

redshift

Comparing simulation output and real data
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